Shades of hyperbolicity for Hamiltonians

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-hyperbolicity and Hyperbolicity

We prove that for C1-diffeomorfisms semi-hyperbolicity of an invariant set implies its hyperbolicity. Moreover, we provide some exact estimations of hyperbolicity constants by semi-hyperbolicity ones, which can be useful in strict numerical computations.

متن کامل

Pointwise Hyperbolicity Implies Uniform Hyperbolicity

We provide a general mechanism for obtaining uniform information from pointwise data. A sample result is that if a diffeomorphism of a compact Riemannian manifold has pointwise expanding and contracting continuous invariant cone families, then the diffeomorphism is an Anosov diffeomorphism, i.e., the entire manifold is uniformly hyperbolic.

متن کامل

A Criterion for Hyperbolicity

The usual deenition of hyperbolicity of a group G demands that all geodesic triangles in the Cayley graph of G should be thin. Using the theorem that a subquadratic isoperimetric inequality implies a linear one, we show that it is in fact only necessary for all triangles from a given combing to be thin, thus giving a new criterion for hyperbolicity of nitely presented groups. Given a group G th...

متن کامل

Shading Shades

Procedural material shaders continue to pop up since the advent of fragment programmability. Most of these shaders concentrate on interesting animated effects. The cg shades demo successfully explores the use of fragment shader programming for a different kind of materials: Highly repetitive, man-made materials. The given code shows a variety of implementation options adapted to different usage...

متن کامل

LINEAR ESTIMATE OF THE NUMBER OF ZEROS OF ABELIAN INTEGRALS FOR A KIND OF QUINTIC HAMILTONIANS

We consider the number of zeros of the integral $I(h) = oint_{Gamma_h} omega$ of real polynomial form $omega$ of degree not greater than $n$ over a family of vanishing cycles on curves $Gamma_h:$ $y^2+3x^2-x^6=h$, where the integral is considered as a function of the parameter $h$. We prove that the number of zeros of $I(h)$, for $0 < h < 2$, is bounded above by $2[frac{n-1}{2}]+1$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinearity

سال: 2013

ISSN: 0951-7715,1361-6544

DOI: 10.1088/0951-7715/26/10/2851